此为历史版本和 IPFS 入口查阅区,回到作品页
Brandon Lan
IPFS 指纹 这是什么

作品指纹

【機器學習】Bias-Variance, MSE, and Fitting

Brandon Lan
·
·
用極簡摘要、統整觀念並記錄下想法

# 偏差 (BIAS): The difference between Model Output (f(x)) and Real Tag (y)

# 方差 (Variance): The variance of Model Output trained on general dataset (E_D(f_D(x)), 各 f_D(x) 的期望值) and Model Output (f_D(x)) trained on Specific dataset D

# (Model Trained on Specific dataset D) 最小平方差 (Mean Square Error, MSE): (y-f_D(x))^2

---------------------------------------------------------------------------------------------------

經由 Wiki 一連串的推導後,MSE = BIAS^2 + Variance + ϵ^2

# ϵ 為隨機數,為 Real Tag (y) 和 真正的 function (f) 的 output 的差,詳見 Wiki

也因此,一個好的模型 (Low MSE) 不能 Overfitting 或 Underfitting

Overfitting causes BIG Variance; Underfitting causes BIG BIAS.









Reference:

  1. WIKI
  2. Jason Chen Blog
CC BY-NC-ND 2.0 授权